Self-training has been shown to be helpful in addressing data scarcity for many domains, including vision, speech, and language. Specifically, self-training, or pseudo-labeling, labels unsupervised data and adds that to the training pool. In this work, we investigate and use pseudo-labeling for a recently proposed novel setup: joint transcription and translation of speech, which suffers from an absence of sufficient data resources. We show that under such data-deficient circumstances, the unlabeled data can significantly vary in domain from the supervised data, which results in pseudo-label quality degradation. We investigate two categories of remedies that require no additional supervision and target the domain mismatch: pseudo-label filtering and data augmentation. We show that pseudo-label analysis and processing as such results in additional gains on top of the vanilla pseudo-labeling setup resulting in total improvements of up to 0.6% absolute WER and 2.2 BLEU points.
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
A recent family of techniques, dubbed lightweight fine-tuning methods, facilitates parameter-efficient transfer learning by updating only a small set of additional parameters while keeping the parameters of the pretrained language model frozen. While proven to be an effective method, there are no existing studies on if and how such knowledge of the downstream fine-tuning approach should affect the pretraining stage. In this work, we show that taking the ultimate choice of fine-tuning method into consideration boosts the performance of parameter-efficient fine-tuning. By relying on optimization-based meta-learning using MAML with certain modifications for our distinct purpose, we prime the pretrained model specifically for parameter-efficient fine-tuning, resulting in gains of up to 1.7 points on cross-lingual NER fine-tuning. Our ablation settings and analyses further reveal that the tweaks we introduce in MAML are crucial for the attained gains.
translated by 谷歌翻译
我们提供了一种单发图像合成的方法,该方法可以通过倒置配备有强正规化器的准稳定分类器来控制单个图像的操作。我们提出的标题为“魔术”的方法是从预先训练的准稳定分类器中的结构化梯度,以更好地保留输入语义,同时保留其分类精度,从而确保合成中的信誉。与当前使用复杂原语的当前方法来监督该过程或使用注意图作为弱监督信号,魔术汇总了输入上的梯度,这是由导向二进制掩码驱动的,该导向二进制掩码可以实施强大的空间先验。魔术在一个框架上实现了一系列的操作,以实现形状和位置控制,强烈的非刚性形状变形,并在存在重复对象的情况下复制/移动操作,并通过仅需指定二进制指南掩码来使用户对综合的企业控制。我们的研究和发现得到了与最新图像的各种定性比较,从成像网和使用机器感知进行定量分析的相同图像以及对100多名参与者的用户调查来认可我们的合成质量。
translated by 谷歌翻译